skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Murphy, Elizabeth A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Redox-active colloids (RACs) represent a novel class of energy carriers that exchange electrical energy upon contact. Understanding contact-mediated electron transfer dynamics in RACs offers insights into physical contact events in colloidal suspensions and enables quantification of electrical energy transport in nonconjugated polymers. Redox-based electron transport was directly observed in monolayers of micron-sized RACs containing ethyl-viologen side groups via fluorescence microscopy through an unexpected nonlinear electrofluorochromism that is quantitatively coupled to the redox state of the colloid. Via imaging studies, using this electrofluorochromism, the apparent charge transfer diffusion coefficientDCTof the RAC was easily determined. The visualization of energy transport within suspensions of redox-active colloids was also demonstrated. Our work elucidates fundamental mechanisms of energy transport in colloidal systems, informs the development of next-generation redox flow batteries, and may inspire new designs of smart active soft matter including conductive polymers for applications ranging from electrochemical sensors and organic electronics to colloidal robotics. 
    more » « less
    Free, publicly-accessible full text available September 5, 2026
  2. Resonant soft X-ray scattering (RSoXS) probes structure with chemical sensitivity that is useful for determining the morphology of multiblock copolymers. However, the hyperspectral scattering data produced by this technique can be challenging to interpret. Here, we use computational scattering simulations to extract the microstructure of a model triblock copolymer from the energy-dependent scattering from RSoXS. An ABC triblock terpolymer formed from poly(4-methylcaprolactone) (P4MCL), poly(2,2,2-trifluoroethylacrylate) (PTFEA), and poly (dodecylacrylate) (PDDA), P4MCL- block -PTFEA- block -PDDA, was synthesized as the model triblock system. Through quantitative evaluation of simulated scattering data from a physics-informed set of candidate structure models against experimental RSoXS data, we find the best agreement with hexagonally packed core–shell cylinders. This result is also consistent with electron-density reconstruction from hard X-ray scattering data evaluated against electron-density maps generated with the same model set. These results demonstrate the utility of simulation-guided scattering analysis to study complex microstructures that are challenging to image by microscopy. 
    more » « less